inflection (inflexion) point

基本解釋拐點(diǎn),轉(zhuǎn)折點(diǎn)

網(wǎng)絡(luò)釋義

1)inflection (inflexion) point,拐點(diǎn);轉(zhuǎn)折點(diǎn)2)point of inflection (inflexion),拐點(diǎn);轉(zhuǎn)折點(diǎn)3)inflection point,拐點(diǎn)4)turning point,拐點(diǎn)5)inflexion,拐點(diǎn)6)inflexion point,拐點(diǎn)7)inflection points,拐點(diǎn)8)"Turning pint",“拐點(diǎn)”9)flex point,拐點(diǎn)10)point of zero moment,拐點(diǎn)

用法和例句

The Algorithm and application of discrete inflection point;

離散型函數(shù)拐點(diǎn)算法及應(yīng)用

8 A note on extreme points and inflection points of rational entire functions;

有理整函數(shù)的極值點(diǎn)和拐點(diǎn)的一個(gè)注記

2007:the profit turning point for papermaking industry;

2007:造紙業(yè)迎來盈利拐點(diǎn)?

As one of their main elements,the print industry of book and newspaper and magazine is in a historical turning point,which the industry has a shrinking tendency.

作為書報(bào)刊產(chǎn)業(yè)鏈的重要環(huán)節(jié)之一,書報(bào)刊印刷業(yè)已處在一個(gè)發(fā)展的歷史"拐點(diǎn)",呈現(xiàn)出萎縮趨勢(shì),其中圖書、期刊印刷業(yè)的萎縮已經(jīng)開始。

By using geometric method, a new algorithm is advanced on quick locating for turning points in discrete point set of plane curve.

采用幾何的方法 ,提出一種確定平面曲線離散點(diǎn)集拐點(diǎn)的快速算法 ,該算法結(jié)構(gòu)簡(jiǎn)單、計(jì)算效率高 ,而且可以快速確定平面參數(shù)曲線離散點(diǎn)集的拐點(diǎn) 。

Analyzing and Forecasting on the Emergence Time of China s Secondary Industry Inflexion;

中國第二產(chǎn)業(yè)拐點(diǎn)出現(xiàn)時(shí)刻分析與預(yù)測(cè)

It is to calculate the speed of machine tool on PC,and find out the inflexions and the slowdown points,then transmit these datas to the DSP to control the machine tool.

設(shè)計(jì)思想是:在上位機(jī)(PC)上進(jìn)行預(yù)處理,計(jì)算出數(shù)控機(jī)床沿軌跡各點(diǎn)的速度,判斷軌跡的連續(xù)性,并找出軌跡中的"拐點(diǎn)"和減速點(diǎn),然后將這些數(shù)據(jù)傳給下位機(jī)(DSP)對(duì)機(jī)床進(jìn)行運(yùn)動(dòng)控制。

Discussion on the effect of changing mathematic simulation curve inflexion points to the polymerization temperature rising state;

淺析數(shù)學(xué)模擬曲線拐點(diǎn)變化對(duì)聚合升溫反應(yīng)狀態(tài)的影響

Moreover,the flocculation settlement curves of the lignin locution were determined at deferent temperatures under the condition of the polyaluminum ferric chloride flocculation,the sense of the inflexion point of the curve was discussed,and the acaivation energy of the colloid solution flocculatiov was eltimated,which corresponds to the potential-energy(Φm) between sol particles accordin.

用傳統(tǒng)的化學(xué)動(dòng)力學(xué)方法討論了溫度對(duì)絮凝過程的影響,測(cè)定了木質(zhì)素溶液在不同溫度時(shí)被聚氯化鋁鐵(PAFC)絮凝的絮凝沉降曲線,討論了曲線上拐點(diǎn)的意義,并估算出該膠體溶液絮凝時(shí)的活化能,它相當(dāng)于DLVO理論為膠體粒子間的勢(shì)能能壘φm,實(shí)驗(yàn)得出φm≈16。

Several sufficient conditions of inflexion point of curve are gained.

給出了曲線拐點(diǎn)判定的幾個(gè)充分條件,對(duì)比曲線的拐點(diǎn)和極值的判別方法,研究了曲線的拐點(diǎn)、極值點(diǎn)和不可導(dǎo)點(diǎn)之間的關(guān)系。

We analyze the geometric features like cusps and inflection points in the curve and calculate the cusps and inflection points, then give a necessary and sufficient condition to the inflection points.

本文是在文 [1 ]基礎(chǔ)上的繼續(xù)和發(fā)展 ,主要對(duì)有理 H-樣條曲線的形狀進(jìn)行分析 ,討論其諸如拐點(diǎn)和奇點(diǎn)的幾何特征 ,給出有理參數(shù)平面三次 H-樣條曲線在非退化情況下有拐點(diǎn)的充要條件 ,并證明在區(qū)間 ( 0 ,1 )內(nèi)曲線段無奇點(diǎn)的結(jié)論。

In this paper the authors analyze the shape features like singularities,inflection points and local or global convexity of rational C-Bézier curve,then give the necessary and sufficient conditions for this curve having one or two inflection points,or a loop,or a cusp,or being local or global convex in terms of the relative position of its control polygons′ side vectors.

對(duì)有理C-Bézier曲線進(jìn)行了形狀分析,得出曲線上含有奇點(diǎn)、拐點(diǎn)和曲線為局部凸或全局凸的、用控制多邊形邊向量相對(duì)位置表示的充分必要條件,并討論了權(quán)因子變化對(duì)曲線形狀圖的影響。

In this paper we discuss the distribution of singular points and inflection points on a planar C-Bezier curve in details, and give the necessary and sufficient conditions for having one or two inflection points, or a loop, or a cusp, or none of the above points on the curve in terms of their control polygons.

本文完全地討論了平面C-曲線和平面C-Bezier曲線的奇拐點(diǎn)和凸性性質(zhì):曲線段為且必為下列情形之一:有一各拐點(diǎn),兩個(gè)拐點(diǎn),一個(gè)尖點(diǎn),一個(gè)二重結(jié)點(diǎn),處處為凸;并給出了相應(yīng)的用控制多邊形相對(duì)位置表示的充分必要條件。

最新行業(yè)英語

行業(yè)英語