Let G be a graph,the binding number of G is defined as bind(G)=min|N_G(X)||X|:Ф≠XV(G),N_G(X)≠V(G)The relationship of binding numbers bind(G) to factional -factors of graphs was discussed,and some sufficient conditions of existence of fractional -factors with the graphs were given.
設(shè)G是一個(gè)簡(jiǎn)單無(wú)向圖,G的聯(lián)結(jié)數(shù)定義為bind(G)=min|NG(X)||X|:Ф≠X V(G),NG(X)≠V(G)研究了圖的聯(lián)結(jié)數(shù)bind(G)與圖的分?jǐn)?shù)[a,b]-因子之間的關(guān)系,給出了圖有分?jǐn)?shù)[a,b]-因子的若干充分條件。
In this paper, we first introduce the fractional B-spline wavelets proposed by Blu and Unser, and discuss their properties and construction method.
本文首先介紹了分?jǐn)?shù)B樣條小波的構(gòu)成及其性質(zhì),基于分?jǐn)?shù)B樣條小波一維離散Fourier變換公式,推導(dǎo)出了分?jǐn)?shù)B樣條小波二維離散Fourier變換公式,從而實(shí)現(xiàn)了圖像分解和重構(gòu)。