We discuss t-norm and implications on I() based on left-continuous t-norm and right-continuous implications on .
本文在[0,1]上左連續(xù)t模和右連續(xù)蘊(yùn)含的基礎(chǔ)上討論了區(qū)間數(shù)I([0,1])上的t模及蘊(yùn)含,得到了(I([0,1]),T,θT)構(gòu)成一個(gè)剩余格。
By combining the T-composition with respect to a t-norm T and the dual S-composition,some interesting equivalent conditions for T-transitivity,negative S-transitivity,T-S-semitransitivity and T-S-Ferrers property are established.
利用t模T定義的T合成及其對(duì)偶S合成建立了T傳遞性、反向S傳遞性、S-T半傳遞性和S-TFerrers性的若干等價(jià)條件。
Atanassov,making use of T-norm and S-norm, we define the product of two intuitionistic fuzzy sets, give the concept of the intuitionistic fuzzy subgroup with respect to trigonal norms and its equivalent proposition in this (paper.
Atanassov引進(jìn)的直覺模糊集概念的基礎(chǔ)上,利用T模和S模,定義了兩個(gè)直覺模糊集的乘積,給出了關(guān)于三角模的直覺模糊群的概念及其等價(jià)命題,最后在兩個(gè)經(jīng)典群同態(tài)與同構(gòu)意義下,研究了這種直覺模糊群的同態(tài)像及原像等問
Notes on the Pseudo-t-norms and Implication Operators on a Complete Brouwerian Lattice(II);
完備格Brouwer上偽t-模與蘊(yùn)涵算子的注記(II)(英文)
Notes on the Pseudo-t-norms and Implication Operators on a Complete Brouwerian Lattice(I);
完備Brouwer格上偽t-模與蘊(yùn)涵算子的注記(I)(英文)
Pseudo-t-norms and Implication Operators:L-relation Equations;
偽t-模與蘊(yùn)涵算子:L-關(guān)系方程(英文)